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Abstract

With the help of an example of the equation of nonlinear transfer with
power nonlinearity, it is shown how the requirement of functional self-
similarity (renormalization invariance) enables one to construct a solution to
the equation. Using this approach, the functional forms of the solution and
additional conditions allowed are found by solving linear differential equations
of the renormalization group, and the original nonlinear equation is only used
for finding the numerical parameters of the solution (power exponents and
coefficients). In addition, we present exact solutions to a transfer equation of a
more general type that includes coordinates and space derivatives to arbitrary
power.

PACS numbers: 02.30.Hq, 02.30.Jr, 05.10.Cc

1. Introduction

The quasilinear parabolic equation of the second order is the basis of mathematical models for
describing the nonlinear transfer phenomena. This equation is used in the study of processes
such as nonlinear diffusion and heat conduction, transfer of turbulent energy, adiabatic filtration
of fluids and gases in porous media, as well as a great variety of phenomena related to chemical
kinetics, biochemistry, the problems of population and migration and so on. The universality of
quasilinear parabolic equations is due to the fact that these equations describe the conservation
laws of different physical quantities such as the number of particles, mass, energy, linear
momentum and angular momentum, and others. The search for solutions is complicated due
to the absence of the superposition principle widely used while solving linear problems.

The search for a solution can be made much easier by using the assumption of self-
similarity. Commonly, in the search for self-similar solutions to nonlinear partial differential
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equations the symmetry properties of the equation under consideration, i.e. the properties
of the invariance of the equation form under transformation of the function sought and its
arguments, are studied. The search for these symmetries is carried out within the framework of
the presently well-developed method of group analysis of differential equations (Ovsyannikov
1982, Olver 1986). The specification of initial or boundary conditions can break the symmetry,
and hence for the existence of self-similar solutions it is required that additional conditions
also possess the symmetry of the original equation. However, additional conditions are usually
given at a fixed value of a coordinate (a boundary-value problem) or at a fixed value of time
(an initial-value problem), and therefore it is not clear how one can verify the invariance of
additional conditions under transformations of the symmetry group, which describe combined
transformations of coordinate and time. Therefore, the question that should be posed is:
what must be the functional form of additional conditions (initial or boundary) in order to
leave the solution invariant under transformations of the symmetry group? Some methods
were developed to tackle this problem (we may point out the most recent paper by Goard
(2008)).

In the present paper, we propose an alternative method of solving this problem that is
based on the renormalization-group arguments using the arbitrariness in setting additional
conditions.

The family of solutions allowed by the symmetry group of the equation and additional
conditions includes a set of numerical parameters of the symmetry transformations, and to
choose a single-valued solution it is necessary to fix the values of these parameters by setting
the values of the function and its derivatives at a certain point of the space of independent
variables. However, such a point can be chosen arbitrarily and the result of this arbitrariness is a
requirement of the invariance of the solution by varying the position of this point in combination
with an appropriate change (renormalization) of numerical parameters of the problem. This
property of the solution and additional conditions was named the renormalization invariance.
Below, with the help of the example of the transfer equation with power nonlinearity of the
flux, the way the property of renormalization invariance can be used when searching for
self-similar solutions is demonstrated.

In section 2, we consider a one-dimensional transfer equation with power nonlinearity.
To choose a single-valued solution, we set the values of the function and its time derivative
at a certain spacetime point. Next, we exploit the dimensionality arguments to represent
the solution in terms of the dimensionless function of the dimensionless variables. In
section 3, the concept of renormalization-group invariance is explained and the functional
and differential equations of the renormalization group are obtained. Section 4 is devoted
to solving the renormalization-group equations. We find a functional form of the boundary
condition as a solution to the linear differential equation and obtain a nonlinear ordinary
differential equation for a function of a single variable. In a special limiting case, we
obtain the solution with exponential time dependence. In the case of an initial-value
problem, we find a functional form of the initial condition and obtain a nonlinear ordinary
equation for another unknown function of a single variable. A solution to the equation of
nonlinear transfer in a multi-dimensional radially symmetric case is presented in section 5.
The solution has been obtained by solving the linear partial differential equations of the
renormalization group. An equation of a more general form including spatial derivatives to
arbitrary power is investigated in section 6 where the solution is obtained using the same
technique.
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2. The equation of nonlinear transfer and the dimensionality arguments when

constructing the solution

The equation of transfer relates the time derivative of some scalar quantity and the divergence
of its flux:

∂u(r, t)

∂t
+ div Q(u,∇u) = 0.

In a one-dimensional case and when the flux has the form

Q(x, t) = −σum(x, t)
∂u(x, t)

∂x
,

this equation may be written as

∂u(x, t)

∂t
= σ

∂

∂x
um(x, t)

∂u(x, t)

∂x
(m is arbitrary). (2.1)

This equation occurs in many problems of mathematical physics (Samarskii et al 1995); in
particular, at m > 1 this equation is referred to as the equation of a porous medium and when
0 < m < 1 it is called the equation of fast diffusion. The specific interest in these equations
relates to the fact that under some special conditions they describe the so-called blow-up
regimes, which were found in numerical calculations and were then supported experimentally
(Samarskii et al 1995). One can find a detailed group analysis of equation (2.1) and a list of
invariant (self-similar) solutions in the paper by Ovsyannikov (1959) (see also Pukhnachev
1995).

The simplicity of equation (2.1) enables one to readily recognize the symmetry properties
of this equation with respect to the group of scale transformations u → μu, x → λx,

t → λ2μ−mt and shifts of space and time variables x → x − x1 t → t − t1, where the
parameters μ, λ, x1 and t1 are arbitrary. Careful group analysis (Ovsyannikov 1959) shows
that there are no other symmetries except the case m = −1/3, which will be beyond the scope
of our investigation. We note that the scale transformations specified by parameter μ relates
to the ambiguity in a choice of units of measurement and while constructing the solution
this corresponds to using the dimensionality arguments, whereas the ambiguity in a choice of
parameter λ is a specific property of equation (2.1).

The existence of the symmetry pointed out means that if u(x, t) is some solution to
equation (2.1) obeying the additional conditions that preserve the symmetry properties of
the original equation, the expression μu(λ(x − x1), λ

2μ−m(t − t1)) is also a solution to this
equation if additional conditions are modified in a corresponding manner (the functional form
of additional conditions is defined from the requirement that under symmetry transformations,
this form remains unchanged). Thus, one has a family of solutions, which depend on the set
of parameters λ, μ, x1 and t1. To choose a unique solution to the problem, it is necessary
in addition to specify the set of parameters of symmetry group transformations. This can
be realized by additionally specifying the values of the function and its derivative (spatial or
temporal) at some spacetime point x0, t0 (hereinafter referred to as a ‘normalization point’).
In further presentation, we will use the following notation: values of the coordinate and
time of the normalization point are denoted by [x0, t0] and the value of the function at the
normalization point is written as u(x0, t0) = u(x, t)|[x0,t0]. According to this notation, the
additional requirements for a choice of numerical parameters are written as

u(x, t)|[x0,t0] = u0,
∂u(x, t)

∂x

∣∣∣∣
[x0,t0]

= u0x,
∂u(x, t)

∂t

∣∣∣∣
[x0,t0]

= u0t . (2.2)
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The second and third of relations (2.2) introduce some characteristic scales of length l0
and time τ0 according to formulae

l−1
0 = ∂ ln u(x, t)

∂x

∣∣∣∣
[x0,t0]

, τ−1
0 = ∂ ln u(x, t)

∂t

∣∣∣∣
[x0,t0]

. (2.3)

However, from the viewpoint of dimensionality arguments, the characteristic scales of
length and time are not independent; they are connected by the relation l0 = ν

√
στ0u

m
0 , where

ν is an arbitrary dimensionless parameter. The parameters u0, τ0 and l0 introduced by setting
additional conditions (2.2) have to be taken into account when carrying out the dimensionality
analysis.

Below we will investigate a variant when in the normalization point the temporal derivative
is given, and this corresponds to specifying the timescale τ0 according to the second of relations
(2.3). Choosing x = 0, t = 0 as the normalization point and using the dimensionality
considerations, we find

u(x, t) = u0f

(
x√

στ0u
m
0

,
t

τ0

)
, (2.4)

where f (ξ, η) is a dimensionless function of dimensionless variables ξ = x/
√

στ0u
m
0 and

η = t/τ0 being subject to the normalization conditions

f (ξ, η)|[0,0] = 1,
∂f (ξ, η)

∂η

∣∣∣∣
[0,0]

= 1. (2.5)

3. Renormalization invariance

Note that the choice of [0, 0] as the normalization point with relevant specification of the
values of the function and one of its derivatives at this point using two parameters u0 and
τ0 = u0/u0t is not unique, that is, one may take any other point [x1, t1] as the normalization
point and fix new (renormalized) values of the parameters u1 and τ1 by fitting those to the
solution defined by specifying the parameters at the original normalization point [0, 0]. In
doing so, the form of the solution remains invariant similar to the case when in order to choose
a certain trajectory of a material point out of a family of trajectories it is required to give a
value of point coordinate x0 at time t0, but instead of this it is possible to set the value of
coordinate x1 at another time t1 as an initial condition, and in this case the form of trajectory
remains invariant if the point x1 lies in this trajectory (Teodorovich 2004), that is, we have the
relation

x = X(t − t0, x0) = X(t − t1, x1), where x1 = X(t1 − t0, x0), X(0, x) = x.

A set of transformations corresponding to a shift of the normalization point in combination
with a relevant change (renormalization) of numerical parameters set up at a new normalization
point makes up a group named the renormalization group (RG), and the invariance of
the solution form under RG transformations is referred to as functional self-similarity or
renormgroup invariance (Shirkov 1982, Kovalev et al 1998).

The method of the renormalization group, which first originated in quantum-field theory,
received wide application in various fields of mathematical physics (for example, see Kovalev
et al 1998, Teodorovich 2004).

The property of functional self-similarity in application to the problem under consideration
means that the following relationship should be fulfilled:

u(x, t) = u0f

(
x√

στ0u
m
0

,
t

τ0

)
= u1f

(
x − x1√
στ1u

m
1

,
t − t1

τ1

)
, (3.1)
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where u1 and τ1 are defined in terms of values of the function u(x, t) and its time derivative
at a new normalization point.

To find renormalized parameters u1 and τ1, we put x = x1 and t = t1 in equation (2.4)
and use normalization condition (2.5). As a result, we get the dependence of the renormalized
parameters on the choice of the normalization point:

u1 = u0f (ξ, η)[ξ1,η1],

τ−1
1 = ϕ(ξ, η)[ξ1,η1]τ

−1
0 , ϕ(ξ, η) = ∂ ln f (ξ, η)

∂η
, ϕ(0, 0) = 1.

(3.2)

Substitution of (3.2) into the condition of functional self-similarity (3.1) leads to the
functional RG equation for the function f (ξ, η):

f (ξ, η) = f (ξ1, η1)f
(
(ξ − ξ1)

√
ϕ(ξ1, η1)f −m(ξ1, η1), (η − η1)ϕ(ξ1, η1)

)
. (3.3)

To obtain the RG differential equation, we differentiate equation (3.3) with respect to ξ1

and next put ξ1 = η1 = 0. This leads to the equation

αf (ξ, η) =
[

1 +
1

2
(αm − β)ξ/2

]
∂f (ξ, η)

∂ξ
− βη

∂f (ξ, η)

∂η

α = ∂f (ξ, η)

∂ξ

∣∣∣∣
[0,0]

, β = ∂ϕ(ξ, η)

∂ξ

∣∣∣∣
[0,0]

.

(3.4)

Similarly, differentiating (3.3) with respect to η1 and putting ξ1 = η1 = 0, we find

f (ξ, η) = 1

2
(m − γ )ξ

∂f (ξ, η)

∂ξ
+ (1 − γ η)

∂f (ξ, η)

∂η
, γ = ∂ϕ(ξ, η)

∂η

∣∣∣∣
[0,0]

. (3.5)

The fact that when obtaining equations (3.3)–(3.5), the explicit form of the original
equation (2.1) was not used should be noted; from this equation, only information on the
dimensions of quantities in the equation and the invariance property under shifts of spacetime
variables was used. This means that there are other equations possessing the same symmetry
properties, for example ut = σ(um+1)xx, utt = σ(u2m+1)xxxx , etc. The requirement of the RG
invariance of the solution expressed by equation (3.1) was added as some natural additional
condition. Because of this, equations (3.3)–(3.5) cannot be treated as an equivalent of the
original equation; these equations enable one to select a certain class of solutions and to reduce
the number of independent variables by means of passing on to self-similar variables.

4. Solving RG equations

Now we pass on to the search for a solution to equation (3.5) which we will seek for in the
form f = exp ; in this case (0, 0) = 0 according to (2.5). Hence, the equation for  takes
the form

1 = 1

2
(m − γ )ξ

∂(ξ, η)

∂ξ
+ (1 − γ η)

∂(ξ, η)

∂η
.

The solution to this equation can be represented as a sum of a particular solution to the
inhomogeneous equation

1(η) = − 1

γ
ln(1 − γ η)

and a general solution to the homogeneous equation that can be found by the method of
characteristics:

0(ξ, η) = ln ψ(ζ ), ζ = ξ(1 − γ η)−(m−γ )/2γ .

5
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Thus, the solution to equation (3.5) turns out to be presented in the form

f (ξ, η) = (1 − γ η)−1/γ ψ(ζ ). (4.1)

After substitution of (4.1) into the original equation (2.1), we get the equation for function
ψ(ζ ):

d

dζ
ψm dψ

dζ
+

m − γ

2
ζ

dψ

dζ
− ψ = 0 ψ(0) = 1, ψ ′(0) = α. (4.2)

Solution (4.1) obtained is subject to boundary conditions of the form

u(0, t) = u0(1 + Bt)b,
∂u(x, t)

∂t

∣∣∣∣
[0,0]

= u0t = bBu0

and in terms of parameters B and b, which specify boundary conditions, this solution can be
written as

u(x, t) = u0(1 + Bt)bψ

(√
bB

σum
0

x(1 + Bt)−(mb+1)/2

)
. (4.3)

The solution to form (4.1) has been obtained by Ovsyannikov (1959) and is presented
in a monograph (Samarskii et al 1995) as an example of the solution, which describes the
traveling wave for a ‘power boundary regime’. Unlike Samarskii et al (1995), in the approach
applied the boundary regime corresponding to (4.1) has been obtained from the requirement of
renormalization invariance as a solution to the RG differential equation rather than as a lucky
chosen (guessed) form of the boundary conditions allowed. If B < 0, solution (4.3) describes
a ‘blow-up regime for a ‘power boundary condition’ (Samarskii et al 1995).

Note that in the case γ → 0, which in the language of the RG approach corresponds to
the absence of renormalization of a characteristic timescale, by using the relation

(1 − γ η)−1/γ |γ→0 = exp{−ln(1 − γ η)/γ }|γ→0 = exp{η},
solution (4.1) takes the form

f (ξ, η) = eηψ(ξ e−mη/2). (4.4)

Solution (4.4) is also contained in the paper by Ovsyannikov (1959) and is given in
Samarskii et al (1995) as an example of a special choice of boundary behavior that allows
a self-similar solution (‘exponential boundary regime’). According to the results presented
above, this regime proves to be a limiting case of the ‘power boundary regime’ and due to this
fact the solutions of a similar form were named the limiting self-similar solutions (Barenblatt
1979). Such a solution is in the monograph (Barenblatt 1979), where while constructing a
solution to equation (2.1) subject to the boundary condition u(0, t) = u0eνt , the author paid
attention to and used the fact that under a shift of the initial point of time by t1 and carrying
out the change u0 → u0eνt1 the solution has to hold its form, and this in fact reproduces
the requirement of the RG invariance of the solution in a special case when there is no
renormalization of the timescale under a shift of the normalization point along the time axis.
The corresponding solution can be written in the form

u(x, t) = u0eνtψ

(√
ν

σum
0

xt−mνt/2

)
, ν = u0t

u0
. (4.5)

Self-similar solutions of another type can be obtained from equation (3.4) that corresponds
to the requirement of invariance with respect to a shift of the normalization point along the
coordinate axis. Repeating the procedure of constructing a solution to equation (3.5), we find

f (ξ, η) = (1 + Aξ)1/Aχ(ζ ), ζ = η(1 + Aξ)β/A, A = 1
2 (m − β). (4.6)
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The function χ(ζ ) is a solution to the ordinary differential equation of the form

dχ

dζ
=

[
aζ 2 d2

dζ 2
+ bζ

d

dζ
+ c

]
χm+1, χ(0) = 1, χ ′(0) = 1,

where the coefficients a, b and c are expressed in terms of parameters α, β and m.
Relationship (4.6) describes the solution to equation (2.1) that corresponds to initial

conditions of the form u(x, 0) = u0(1 + Cx)c. In terms of the parameters C and c specifying
the initial condition, this solution can be written as

u(x, t) = u0(1 + Cx)cχ

(
u0t t

u0
(1 + Cx)mc−2

)
. (4.7)

In a special case A = 0 (β = m), which corresponds to the absence of timescale
renormalization under a shift of the normalization point along the spatial axis, solution (4.6)
takes the form

f (ξ, η) = eαξχ(η emαξ ). (4.8)

To this case, the initial condition of the form u(x, 0) = u0ex/l (‘exponential boundary regime’)
and the following form of the solution is assigned:

u(x, t) = u0ex/lχ

(
u0t t

u0
emx/l

)
. (4.9)

Solutions (4.7) and (4.9) were also obtained by Ovsyannikov (1959) as allowed self-
similar solutions to equation (2.1) regardless of the choice of the initial condition form under
which these solutions can be realized.

5. The multi-dimensional radially symmetric case

Consider the equation of the form

∂u(r, t)

∂t
= σ

1

rn

∂

∂r
rnum(r, t)

∂u(r, t)

∂r
, (5.1)

which describes the nonlinear transfer of some scalar quantity in the space of dimension
(n + 1) when the distribution is a radially symmetric one. Within the framework of the
commonly used approach, the solution to this equation is reproduced in a self-similar form (in
dimensionless variables) u(r, t) = tαθ(r/tβ), and the power exponents α and β are defined
from the requirement of existence of the conserved quantity (‘integral of motion’)

∫
u(r, t)rn dr

and consistency with the original equation. Consequently, one comes to a nonlinear ordinal
differential equation for the function of a self-similar variable θ(ζ ), and solving this equation
enables one to find a solution to equation (5.1). However, in many cases ‘the integral of
motion’ pointed out diverges and the procedure described seems to be not sufficiently correct.
For this reason, we present another way to construct the solution that is not based on the
assumption of the existence of ‘integral of motion’.

First of all, we note that equation (5.1) does not possess the invariance with respect to
a shift of the spatial argument r. The contraction of the symmetry group of equation (5.1)
enables one to get more detailed information about the form of invariant solutions and initial
and boundary conditions allowed; however, in this case, the above-outlined method has to be
modified.

To choose a unique solution out of the family of solutions allowed by the symmetry
group, assume that at the normalization point [r0, t0] the values of the function and its spatial

7
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derivative are given by u(r, t)|[r0,t0] = u0,
∂u(r,t)

∂r
|[r0,t0] = u0r . As a result, in the theory, there

arises a new parameter l0 with the dimension of length defined by the relation

l−1
0 = u0r

u0
= ∂ ln u(r, t)

∂r

∣∣∣∣
[r0,t0]

. (5.2)

The dimensionality arguments lead to the following form of the solution:

u(r, t) = u0f

(
r

r0
,
σum

0 (t − t0)

r2
0

,
l0

r0

)
≡ u0f (ξ, η, g). (5.3)

According to the normalization condition, the function f (ξ, η, g) obeys the ‘boundary
conditions’

f (1, 0, g) = 1,
∂ ln f (ξ, η, g)

∂ξ

∣∣∣∣
[1,0]

= 1

g
. (5.4)

A requirement of renormalization invariance means that the solution form has to be
unchanged under the variation of the normalization point r0 → r1, t0 → t1 in combination
with the relevant renormalization of numerical parameters of the problem

u0 → u1 = u0f (λ, η1, g), u0r → u1r = u0rϕ(λ, η1, g),

where λ = r1/r0, η1 = σum
0 (t1 − t0)/r2

0 , ϕ(ξ, η, g) = ∂ ln f (ξ, η, g)/∂ξ .
From this, it follows that

u(r, t) = u0f

(
r

r0
,
σum

0 (t − t0)

r2
0

,
l0

r0

)
= u1f

(
r

r1
,
σum

1 (t − t1)

r2
1

,
l1

r1

)
. (5.5)

Relation (5.5) leads to the RG functional equation

f (ξ, η, g) = f (λ, η1, g)f

(
ξ

λ
,
η − η1

λ2
f m(λ, η1, g),

1

λϕ(λ, η1, g)

)
. (5.6)

Similar to (3.4)–(3.5) from (5.6), one can obtain two linear differential equations:{
fξ − ξ

∂

∂ξ
− (2 − mfξ)η

∂

∂η
− (g + g2ϕξ )

∂

∂g

}
f (ξ, η, g) = 0 (5.7a)

{
fη − (1 − mfηη)

∂

∂η
− (g2ϕη)

∂

∂g

}
f (ξ, η, g) = 0

fξ = ∂f (ξ, 0, g)

∂ξ

∣∣∣∣
ξ=1

= 1

g
, ϕξ = ∂ϕ(ξ, 0, g)

∂ξ

∣∣∣∣
ξ=1

,

fη = ∂f (1, η, g)

∂η

∣∣∣∣
η=0

, ϕη = ∂ϕ(1, η, g)

∂η

∣∣∣∣
η=0

.

(5.7b)

Unfortunately, equations (5.7) include three g-dependent functions ϕξ , fη and ϕη, whose
forms can be found from knowledge of function f (ξ, η, g). Nevertheless, if one takes
into account the fact that function f (ξ, η, g) is a solution to the dimensionless form of
equation (5.1)

∂f

∂η
= 1

ξn

∂

∂ξ
ξnf m ∂f

∂ξ
, (5.8)

one can find a relation between these functions, for example, by taking the function ϕξ (g)

in the form of a polynomial of finite power and solving equation (5.7) at η = 0. (In the
procedure of the RG method proposed by Bogolyubov and Shirkov (1955), these functions (RG
functions) are defined using low-order perturbation theory with consequent substitution of the
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functions obtained in RG differential equations and solving these equations. Such a procedure
corresponds to summing some infinite subsequence of total perturbation series (improved
perturbation theory).) The solution to the equation for f (ξ, 0, g) gives the form of initial
conditions being in agreement with the request for renormalization invariance. Knowledge of
the form of function f (ξ, 0, g) enables one to find derivatives of this function with respect
to ξ , and this gives a possibility of finding the required derivatives with respect to η using
relations followed from (5.8) and then finding f (ξ, η, g) by solving equations (5.7).

Following this program we assume g + g2ϕξ = αg + β, where α and β are numerical
parameters that have to be found later. Substitution of this expression into (5.7a) and a
subsequent solution to the equation obtained enables one to find function f (ξ, 0, g). According
to the procedure given in the appendix, the solution has the form

f (ξ, 0, g) =
{

1 +
β

αg
(1 − ξα)

}−1/β

. (5.9)

We will seek for the solution f (ξ, η, g) in the form

f (ξ, η, g) =
{(

1 +
β

αg

)
A(ζ ) − βξ 2

αg
B(ζ )

}−1/β

, (5.10)

where ζ is a solution to the equation of characteristics:

dη

2 − m/g
= dg

αg + β

and has the form

ζ = γ η, γ = gm/β

(αg + β)m/β+2/α
. (5.11)

The functions A and B obey initial conditions A(0) = B(0) = 1.
Substitution of (5.10) into a dimensionless version (5.8) of the original equation (5.1)

gives that (5.10) will be a solution to this equation if

α = 2, β = −m, (5.12)

whereas the functions A(ζ ) and B(ζ ) are defined by relations

A(ζ ) = (1 − bζ )−a/b, B(ζ ) = (1 − bζ )−1, a = (n + 1)m, b = (n + 1)m + 2. (5.13)

Hence, the solution turns out to be represented in the form

f (ξ, η, g) =
{(

1 − m

2g

)(
1 − bη

g

)−a/b

+
mξ 2

2g

(
1 − bη

g

)−1
}1/m

. (5.14)

It is easily verified that (5.14) is also a solution to the second RG differential equation (5.7b).
In terms of the original parameters of the problem u0, u0r and r0 at t0 = 0, the solution

may be written as

u(r, t) = u0

{(
1 − mu0r r0

2u0

)
T (t)−a/b +

mu0r

2u0r0
r2T (t)−1

}1/m

,

u(r, 0) = u0

{
1 +

mu0r

2u0r0

(
r2 − r2

0

)}1/m

(5.15)

T (t) = 1 − bσum−1
0 u0r

2r0
t.

9
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If u0r > 0, solution (5.15) describes the blow-up regimes (Samarskii et al 1995) when the
initially given distribution becomes singular at a certain point in a finite time interval. This
solution is well known and can be found in Polyanin & Zaitsev (2002, item 1.1.10.7). Solution
(5.15) allows the representation in a self-similar form:

u(r, t) = u0�(t)−(n+1)

{
1 −

(
r0

R(0)

)2

+

(
r

R(0)�(t)

)2
}1/m

, (5.16)

where �(t) = T (t)1/b, R(0) =
√

2u0r0
m|u0r | and T = (t̄ − t)/t̄ is the dimensionless time counted

off the blow-up time t̄ = 2r0|u0r |/bσum−1
0 in a reverse direction.

When u0r < 0, the solution also turns out to be representable in a self-similar form:

u(r, t) = u0�(t)−(n+1)

{
1 +

(
r0

R(0)

)2

−
(

r

R(0)�(t)

)2
}1/m

r

R(0)�(t)
<

√
1 +

(
r0

R(0)

)2

,

(5.17)

where T = (t − t̄ )/t̄ . This solution describes the propagation of a disturbance wave into an
undisturbed medium at a finite speed of propagation; it was first obtained by Zel’dovich and
Kompaneets (1950).

Thus, the realization of either the blow-up regime or the regime of propagation of the
disturbance wave is defined by the sign of spatial derivative u0r at the normalization point
[r0, 0].

It should be noted the fact that while obtaining self-similar solutions (5.16) and (5.17) of
the form

u(r, t) = C�(t)β�

(
r

�(t)

)
(5.18)

the assumption of self-similarity was not used as a starting point and nor was one forced to
solve the nonlinear differential equation for the function of a self-similar variable such as (4.3).
The form of the solution was found by solving the first-order linear differential equations (RG
differential equations).

6. An equation of a more general type

Without any modification, the method presented above appears to be applicable to the nonlinear
equation of a more general type:

∂u(x, t)

∂t
= σ

1

xn

∂

∂x
xn+pu(x, t)m

∣∣∣∣∂u(x, t)

∂x

∣∣∣∣
k

sgn

(
∂u(x, t)

∂x

)
, (6.1)

which is not considered in Polyanin & Zaitsev (2002).
The equation of such a form occurs in the problem on the propagation of seam

hydrofracture in pumping a non-Newtonian fluid with a power rheological law.
Similar to the above-presented procedure, we will seek the solution in the form

u(x, t; x0, t0; u0, u0x) = u0f

(
x

x0
,
σum+k−1

0 (t − t0)

x
k+1−p

0

,
u0

u0xx0

)
, (6.2)

10
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where the dimensionless function of dimensionless variables f (ξ, η, g) obeys the RG
functional equation:

f (ξ, η, g) = f (λ, η1, g)f

(
ξ

λ
,
f m+k−1(λ, η1, g)

λk+1−p
(η − η1), g1

)

g−1
1 = λ

∂

∂ξ
ln f (ξ, η, g)|[λ,η1].

(6.3)

The solution to this equation is constructed following the above given scheme and in the
self-similar form it can be written as

f (ξ, η, g) = 1

�(η)n+1

{
1 +

β

αg
− β

αg

(
ξ

�(η)

)α}−1/β

�(η) =
(

1 − c

|g|k sgngη

)1/c

;
(6.4)

here α = (k + 1 − p)/k, β = −(m + k − 1)/k and c = k[α − (n + 1)β].
If k = 1−m (this case corresponds to β = 0), formula (6.4) leads to a limiting self-similar

solution of an exponential form:

f (ξ, η, g) = 1

�(η)n+1
exp

{
1

αg

[(
ξ

�(η)

)α

− 1

]}
. (6.5)

In the above-obtained solution (6.4), the parameters u0, u0x and x0 are not independent,
and one of them can be excluded. When g < 0 the solution is positive definite in the finite
domain 0 � x � L (such solutions are precisely that are of interest in the problem of transfer).
As the numerical parameters of the problem we take U = u(0, t0) and L defined by the relation
u(L, t0) = 0. The corresponding mathematical treatment gives

u(x, t;U,L, t0) = U

�(t)n+1

{
1 −

(
x

�(t)L

)α}−1/β

�(t) =
[

1 + c

∣∣∣∣αβ
∣∣∣∣
k

Um+k−1

Lk+1−p
(t − t0)

]1/c

.

(6.6)

By choosing various values of parameters n, p and k one can get solutions to some various
equations, and the case k = 1 − m when the solution is of an exponential form is an example.
Similarly, if p = (n+1)(m+k−1)+k+1 (this case corresponds to c = 0) the time dependence
turns out to be of an exponential form:

�(t) = exp{(t − t0)/τ }, τ−1 = (n + 1)k(UL)m+k−1.

Part of the solutions obtained is presented in Polyanin & Zaitsev (2002); however, even for
these cases in the approach proposed it is uniquely defined to what initial (or boundary)
conditions the corresponding solutions obey.

Note that at n = p = 0, the expression of the form

u(x, t) = U

�(t)

{
1 −

( |x| + a

L�(t)

)α}1/β

is a solution to equation (6.1) by adding to the right-hand part the source term of the form
Q(t)δ(x), where

Q(t) = −2a
Um+k−1

Lk+1�(t)m+2k

∣∣∣∣m + k − 1

k + 1

∣∣∣∣
k

u(0, t).
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It should be pointed out that the above-described method of constructing the solution
is applicable to some other problems, for example to the problem on transfer processes
with the presence of chemical reactions (Teodorovich 1999) or to the case when the transfer
coefficient is defined by the sign of the time derivative (Barenblatt’s equation) (Barenblatt
1979). However, in all these cases one solves the problem of finding the power exponents of
asymptotic behavior (anomalous dimensions or power exponents of incomplete self-similarity)
(Goldenfeld et al 1990, Ginzburg et al 1991). In our analysis, we use the RG method for
finding the exact solution to the nonlinear transfer equation.

7. Discussion

The part of solutions obtained within the framework of the RG approach are not new; they
fall into the class of self-similar solutions found by Ovsyannikov (1959) and are presented in
Polyanin & Zaitsev (2002). Nevertheless, the search for solutions within the framework of
this approach radically differs from the commonly used approaches that are based on the Lie
symmetry reduction of partial differential equations. Using the Lie symmetry method enables
one to obtain ordinary differential equations such as equation (4.2) for function ψ(ζ ) or for
function χ(ζ ) in section 4. The problem of solving these equations and finding the functional
forms of the initial or boundary conditions occurs to be beyond the scope of this method.

From the above-outlined presentation, one can see that principal distinctions between the
Lie symmetry methods and renormalization-group approach, as well as a certain advantage of
the RG approach, consist in the following.

(1) The assumption of the self-similar form of solution (5.18) is not taken as a starting point;
this form is obtained as a result of solving the RG equations, which are linear differential
equations of first order.

(2) The function of self-similar variables that defines the solution desired is a solution to
the linear partial differential equation rather than a solution to the nonlinear ordinary
differential equation as in the Lie symmetry reduction method.

(3) The functional forms of initial or boundary conditions allowed, which provide that the
solution possesses the symmetry properties of the original equation, are found as solutions
to the RG differential equations and not as suitably chosen forms. The numerical
parameters of these forms are defined by setting the values of the function and its derivative
at a chosen spacetime point (normalization point).

(4) Within the framework of the traditional approach briefly outlined in the beginning of
section 5, the power exponents are found from the assumption of existence of the conserved
quantity (integral of motion); however, for the solution obtained this integral diverges at
a upper limit excluding the case of the solution by Zel’dovich and Kompaneets (1950)
when the upper limit is finite. But at large negative values of parameter p in (6.1), this
integral diverges at a lower limit and the relations for power exponents obtained appear
to be ill justified. In the RG approach, the convergence of the integral of motion is not
required.

The main purpose of this paper is to call attention to the renormalization-group method
and to demonstrate its capability by a special example of the nonlinear transfer equation. As
one can see, the RG method may be regarded as an addition to the Lie symmetry method.
Namely, at the first stage one finds the symmetries of differential equation and invariants of
the symmetry group to reduce the number of independent variables in the differential equation
using the Lie symmetry method, and at the second stage the functional forms of the boundary
conditions and the solution are found by solving the RG differential equations.

12
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Appendix A.

The function f (ξ, 0, g) is a solution to the equation{
1

g
− ξ

∂

∂ξ
− (2g − m)

∂

∂g

}
f (ξ, 0, g) = 0. (A.1)

We will seek a solution in the form f (ξ, 0, g) = exp{(ξ, g)}, where the function (ξ, g)

obeys the equation

1

g
=

{
ξ

∂

∂ξ
+ (2g − m)

∂

∂g

}
(ξ, g). (A.2)

We represent the solution as a sum of a particular solution to an inhomogeneous equation
and a general solution to a homogeneous one (ξ, g) = 1(g) + 0(ξ, g), where 1(g) is a
solution to the equation

1

g
= (2g − m)

d1(g)

dg

and has the form

1(g) = 1

m
ln

(
1 − m

2g

)
. (A.3)

The general solution to the homogeneous equation is found using the method of
characteristic and may be written as

0(ξ, g) = �(ζ), ζ = ln
(
g − m

2

)
− ln ξ 2 ≡ h(g) − ln ξ 2. (A.4)

Using the boundary condition (1, g) = 0, we obtain the form of function 0(ξ, g) with
the help of the relation �(h(g)) = −1(g), from which it follows

�(ζ) = −1(h
−1(ζ )); (A.5)

here, h−1(ζ ) is an inverse function with respect to function h(g) defined by the relation
h−1(h(g)) = g. Using (A.3), we find that this function has the form h−1(ζ ) = m

2 + eζ .
Thus, we find

(ξ, g) = 1

m
ln

[
1 +

m

2g
(ξ 2 − 1)

]
and

f (ξ, 0, g) =
{

1 +
m

2g
(ξ 2 − 1)

}1/m

. (A.6)
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